If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36+y^2=144
We move all terms to the left:
36+y^2-(144)=0
We add all the numbers together, and all the variables
y^2-108=0
a = 1; b = 0; c = -108;
Δ = b2-4ac
Δ = 02-4·1·(-108)
Δ = 432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{432}=\sqrt{144*3}=\sqrt{144}*\sqrt{3}=12\sqrt{3}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{3}}{2*1}=\frac{0-12\sqrt{3}}{2} =-\frac{12\sqrt{3}}{2} =-6\sqrt{3} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{3}}{2*1}=\frac{0+12\sqrt{3}}{2} =\frac{12\sqrt{3}}{2} =6\sqrt{3} $
| 8z-12z=-16 | | (j+7)/3=1 | | -7u+5/3=-5/3u-7/2 | | -4(t+15)=12 | | 5(x+5)=3(x+8) | | (x+8)x+2x=180 | | 16+b^2=49 | | 7x4=(x4)+(2x4)=+8= | | x/7+(3x)/4=7(1/7) | | 5y-14-3y+9=0 | | (x/7)+(3x)/4=7(1/7) | | 25-s=47 | | (x/7)+(3x/4)=7(1/7) | | 9=x-4/x-12 | | 2x+(4x-15)+10=55 | | 81+b^2=324 | | 16x+18=3x-12 | | 81+b^2=256 | | -4(x+5)+3x+-1=-13 | | x2-36=28 | | (x+6)/5=13 | | 2x+x=14+x | | 1/4x-4=3-1/3x | | 4(4x+-4)+x+4=-46 | | 3/2t=−18 | | 1/4x-4=3-x1/3 | | (9x-8)(4x+3)=0 | | 20+x3=27 | | 42+15+.25x=45+.35x | | x9=153 | | y9=153 | | 253=-5(6v-5) |